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Abstract. The spin symmetry in antinucleon spectra of a nucleus is tested by investigating the relations
between the Dirac wave functions of the spin doublets and examining these relations in realistic nuclei
within the relativistic mean-field model. In addition to the fact that the dominant components of the
Dirac spinors of the spin doublet are nearly identical to each other, there is a differential relation between
the smaller components which is found to be almost exactly fulfilled.

PACS. 14.20.-c Baryons (including antiparticles) – 21.10.Hw Spin, parity, and isobaric spin – 21.10.Pc
Single-particle levels and strength functions – 03.65.Ge Solutions of wave equations: bound states

1 Introduction

The relativistic mean-field (RMF) [1] model has been very
successful in describing properties of nuclear matter and
finite nuclei [2–8]. In the relativistic description of the nu-
cleus, the nucleons are treated as Dirac particles inter-
acting with each other via exchanges of various mesons.
In the RMF model, although the binding energy of each
single nucleon is small (a few tens of MeV or less) com-
pared to the nucleon mass, both the attractive scalar and
repulsive vector potentials are very strong. This feature
gives rise to many important results. One of them is that
the long-standing problem, the origin of the pseudospin
symmetry in nuclei was neatly solved [9–13].

The concept of pseudospin [14,15] is based on the ex-
perimental observation of the quasidegeneracy between
two single-particle orbitals with nonrelativistic quantum
numbers

(

nr, l, j = l + 1

2

)

and
(

nr − 1, l + 2, j = l + 3

2

)

,
where nr, l and j are the radial quantum number, the
orbital and total angular momenta, respectively. By intro-
ducing the “pseudo” orbital angular momentum l̃ = l + 1
and “pseudo” spin s̃ = s = 1

2
, these degenerate states

can be expressed conveniently in terms of the pseudospin
doublet with j = l̃ ± s̃.

In ref. [10], it is clearly shown that the pseudo quan-
tum numbers of a particle state with positive energy are
nothing but the quantum numbers of the lower compo-
nent and the pseudospin symmetry is a symmetry of the
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lower component of the Dirac spinor. In the Dirac equa-
tion of the nucleon, when the scalar potential S(r) and
the vector potential V (r) are equal in amplitudes but
opposite in sign, i.e., S(r) + V (r) = 0, or more gener-
ally, d[S(r) + V (r)]/dr = 0, there is an exact pseudospin
symmetry in single-particle spectra [10–12,16–18]. Under
these conditions, there should be some special relations
between the four components of the Dirac wave functions
of the pseudospin doublets which have been used to test
the pseudospin symmetry in realistic nuclei with spher-
ical or axially deformed shapes [19–22]. The readers are
referred to ref. [23] for a recent of review on relativistic
(spin and pseudospin) symmetries in atomic nuclei.

The lower component of the Dirac spinor corresponds
to the antiparticle degree of freedom [24], and the spin
symmetry in the antinucleon spectra was proposed and
justified in real nuclei [19,25]. It was found that not only
the energies of a pair of spin partners are nearly degenerate
but also the larger components of their Dirac wave func-
tions are almost identical [25]. One also expects some other
special relations between the four components of the Dirac
wave functions of a spin doublet in the antinucleon spec-
tra. The differential relations between the eigenfunctions
of spin partners in nucleon spectra have been tested [26].
In the present work, we shall investigate these relations
and test the spin symmetry in antinucleon spectra in re-
alistic nuclei.

The relations between the four components of the
Dirac wave functions of a spin doublet are derived in the
next section. In sect. 3, the RMF calculations in some
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spherical nuclei are performed in order to test these rela-
tions. A brief summary is given in sect. 4.

2 Spin symmetry conditions on the Dirac

spinors

The Dirac equation for nucleons in the relativistic mean-
field model reads

[α · p+ V (r) + β(M + S(r))]ψ(r) = εψ(r). (1)

Considering a spherical system, the radial quantum num-
ber nr, the total angular momentum j, its projection on
the z-axism, and κ are conserved. κ = (−)j+l+1/2(j+1/2)

is the eigenvalue of κ̂ = −β
(

σ̂ · l̂+ 1
)

which character-

izes the spin-orbit operator. The quantum number κ and
the radial quantum number nr can be used to label an
orbit with |2κ| degeneracy. Then the Dirac wave function
for a nucleon ψ(r) is given by

ψ(r) =
1

r





iGnκ(r)Y
l
jm(θ, φ, s)

−Fñκ(r)Y
l̃
jm(θ, φ, s)



 (2)

with

Y l
jm(θ, φ, s) =

∑

ml,ms

〈

lml
1

2
ms

∣

∣

∣

∣

jm

〉

Ylml
(θ, φ)χms

(s),

Gnκ(r)/r and Fñκ(r)/r are the radial wave functions, and

l̃ = l− sign(κ) the orbital angular momentum of the lower
component.

The charge conjugation leaves the scalar potential in-
variant while it changes the sign of the vector potential.
Therefore, the Dirac equation for antinucleons reads

[α · p− V (r) + β(M + S(r))]ψ(r) = εψ(r) (3)

and the Dirac wave function for an antinucleon is given
by the charge conjugation,

ψ(r) =
1

r





−Fñκ̃(r)Y
l̃
jm(θ, φ, s)

iGnκ̃(r)Y
l
jm(θ, φ, s)



 (4)

with κ̃ = (−)j+l̃+1/2(j + 1/2), n = ñ + 1 for κ̃ > 0 and
n = ñ for κ̃ < 0 [25,27]. We adopt the convention that
the quantum numbers of a state follow those of its domi-
nant component. Thus, an antinucleon state is labelled by
{ñ, l̃, κ̃,m}, its pseudo quantum numbers are {n, l, κ,m},
while a particle state is labelled by {n, l, κ,m} with pseudo

quantum numbers {ñ, l̃, κ̃,m}.
The Dirac equation (3) is reduced to two coupled ra-

dially differential equations,
[

d

dr
+
κ̃

r

]

F (r) = [−ε−M + V+(r)]G(r), (5)

[

d

dr
−
κ̃

r

]

G(r) = [+ε−M − V−(r)]F (r), (6)

where V±(r) = V (r) ± S(r). A Schrödinger-like equation
for the upper component F (r) is obtained as



−
1

2M−





d2

dr2
−

1

2M−

dV+

dr

d

dr
+
l̃
(

l̃ + 1
)

r2







F (r)

+

[

1

4M2
−

κ̃

r

dV+

dr
+M − V−

]

F (r) = εF (r), (7)

where M± =M ± ε∓ V∓.
When dV+/dr = 0, there is an exact spin symmetry

in the antiparticle spectra [25]. The dominant components
F (r) of a pair of spin partners are also identical. In real nu-
clei, since dV+/dr 6= 0, this symmetry is broken. Because
the term with dV+/dr is fairly small, the spin symmetry
in antiparticle spectra is approximately conserved.

Rewriting eq. (6) for a spin doublet as

Fl̃± 1

2

(r) =
1

ε−M − V−(r)

[

d

dr
−
κ̃

r

]

Gl̃± 1

2

(r), (8)

and using the relations εl̃+ 1

2

= εl̃− 1

2

and

Fl̃+ 1

2

(r) = Fl̃− 1

2

(r), (9)

when dV+/dr = 0, one arrives at the differential rela-
tion between the lower components of the Dirac wave
functions,
(

d

dr
+
l̃ + 1

r

)

Gl̃+1/2(r) =

(

d

dr
−
l̃

r

)

Gl̃−1/2(r). (10)

Here the radial quantum number ñr is omitted for brevity.
We note that relation (10) is similar to the differential re-
lation between the two upper components of a pseudospin
doublet (eq. (40) given in ref. [21]). We will examine to
what extent the relations given in eqs. (9) and (10) are
fulfilled in realistic nuclei which would tell us how well
the spin symmetry in antinucleon spectra is conserved.

3 Test of the spin symmetry relations in

realistic nuclei

We carried out relativistic mean-field calculations for real-
istic nuclei. Under the mean-field and no-sea approxima-
tions, the equations of motion for nucleons, mesons and
photon are solved in coordinate space. The parameter set
NL3 [28] is used in our calculation. With the vector and
scalar potentials obtained by solving the RMF equations
self-consistently, eq. (3) is solved and we get the eigenener-
gies and eigenfunctions for antinucleons. Good spin sym-
metry is found both in the antiproton and in the antineu-
tron spectra. In the following the results for antineutrons
will be given.

First the antineutron states for the doubly magic nu-
cleus 40Ca are shown in fig. 1. For each pair of the spin
doublets, the left level is with l̃ − 1/2 and the right one

with l̃ + 1/2.
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Fig. 1. Antineutron potential and spectrum of 40Ca. For each
pair of the spin doublets, the left level is with l̃ − 1/2 and the
right one with l̃ + 1/2.

The radial wave functions for the antineutron spin dou-
blet 0p1/2 and 0p3/2 in 40Ca are shown in the left panel
of fig. 2(a). This is the spin doublet with the lowest or-

bital angular momentum l̃ = 1. The energies of these two
states are 271.91 and 271.55 MeV, respectively. We can
see that the upper components F (r) of the eigenfunctions
for the spin doublet are almost exactly identical with each
other due to the good spin symmetry. But the lower com-
ponent G(r) of the wave function of an antineutron state
deviates dramatically from that of its spin partner. In the
right panel of fig. 2(a), the differential relation of the lower
components given in eq. (10) is presented. One finds that
this differential relation is satisfied remarkably well which
gives a further support to the spin symmetry in the antin-
ucleon spectra in nuclei.

With orbital angular momentum l̃ increasing, the spin-
orbit splitting becomes larger [25]. Next we examine re-

lations (9) and (10) for spin doublets with larger l̃. In
figs. 2(b) and (c), the results of the spin doublets 0g7/2,9/2

and 0j13/2,15/2 with l̃ = 4 and 7 are presented, respectively.
The energies of 0g7/2,9/2 are 421.19 and 420.38 MeV and
those of 0j13/2,15/2 are 563.46 and 562.29 MeV. The spin-

orbit splitting increases only slightly with l̃ increasing and
the spin symmetry conditions (9) and (10) are still met

well for spin doublets with larger l̃.

One is also interested in how the spin symmetry
develops with the radial quantum number ñr increasing.
For this purpose we examine the wave function rela-
tions (9) and (10) for spin doublets with larger ñr. The
wave function relations of the spin doublets 3p1/2,3/2

and 6p1/2,3/2 with ñr = 3 and 6 are shown in figs. 3(a)
and (b), respectively. The energies of 3p1/2,3/2 are 596.60
and 596.27 MeV and those of 6p1/2,3/2 are 881.73 and
881.45 MeV. The spin-orbit splitting decreases when the
radial quantum number increases. It can be seen from
fig. 3 that the relations of the wave functions for the spin
doublets (9) and (10) are fulfilled for spin doublets with
large ñr as well.

(a) The antineutron spin doublet 0p1/2 (ε =

271.91MeV) and 0p3/2 (ε = 271.55MeV) in 40Ca.

(b) The antineutron spin doublet 0g7/2 (ε =

421.19MeV) and 0g9/2 (ε = 420.38MeV) in 40Ca.

(c) The antineutron spin doublet 0j13/2 (ε =

563.46MeV) and 0j15/2 (ε= 562.29MeV) in 40Ca.

Fig. 2. (Color online) Radial wave functions (left panel) and
the differential relation (eq. (10)) of the lower components
(right panel) of the antineutron spin doublets with different
orbital angular momentum l̃.
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(a) The antineutron spin doublet 3p1/2 (ε =

596.60MeV) and 3p3/2 (ε = 596.27MeV) in 40Ca.

(b) The antineutron spin doublet 6p1/2 (ε =

881.73MeV) and 6p3/2 (ε = 881.45MeV) in 40Ca.

Fig. 3. (Color online) Radial wave functions (left panel) and
the differential relation (eq. (10)) of the lower components
(right panel) of the antineutron spin doublets with different
radial quantum number ñr and l̃ = 1.

To test the validity of spin symmetry relations (9)
and (10) throughout the periodic table, we carried out cal-
culations for many other nuclei. We choose several of them
as examples, namely, 90Zr, 124Sn, and 208Pb. The results
for antineutron spin doublets 0p1/2 and 0p3/2 in these nu-
clei are shown in fig. 4. The energies of these antineutron
states are 252.27 and 252.23 MeV for 90Zr, 261.60 and
261.59 MeV for 124Sn, and 273.74 and 273.74 MeV for
208Pb. In heavier nuclei the spin symmetry is more con-
served which is inferred from the smaller spin orbit split-
tings. From fig. 4 one can find that the relations between
the radial wave functions of a spin doublet in antineutron
spectra are met well in these nuclei. Similar conclusions
hold for other nuclei and results will not be detailed here.

We notice that in the present calculations the cou-
pling constants of the antinucleon and the nucleon are
related simply by the G-parity transformation [29]. How-
ever, there are several effects which cause deviations of the

(a) The antineutron spin doublet 0p1/2 (ε =

252.27MeV) and 0p3/2 (ε = 252.23MeV) in 90Zr.

(b) The antineutron spin doublet 0p1/2 (ε =

261.60MeV) and 0p3/2 (ε = 261.59MeV) in 124Sn.

(c) The antineutron spin doublet 0p1/2 (ε =

273.74MeV) and 0p3/2 (ε = 273.74MeV) in 208Pb.

Fig. 4. (Color online) Radial wave functions (left panel) and
the differential relation (eq. (10)) of the lower components
(right panel) of the antineutron spin doublets 0p1/2,3/2 for

90Zr,
124Sn, and 208Pb.
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coupling constants of the antinucleons from the G-parity
values, e.g., the inclusion of the Fock terms or the an-
nihilation channels of the antinucleons [30]. One is re-
minded that the present RMF calculations are carried out
under the “no-sea” approximation. The contribution of
the Dirac sea results in smaller potentials for antinucle-
ons thus changing the antinucleon spectra [31]. Further-
more, although “the polarization of the nucleus by the
atomic antiproton is negligible” [32], the polarization ef-
fects caused by the antinucleon inside a nucleus are con-
siderably large and change both the vector and the scalar
potentials [33]. These effects would make the spin sym-
metry discussed here be broken more. But the qualitative
picture will not change. The annihilation probability of
the antinucleon in the nucleus might be very large and
could also change the simple picture of the spin symmetry
presented here.

4 Summary

In summary, we test the spin symmetry in antinucleon
spectra in nuclei by investigating the spin symmetry con-
ditions on the four components of Dirac spinors of spin
doublets. The relativistic mean-field calculations are car-
ried out and the spin symmetry conditions are examined
in nuclei 40Ca, 90Zr, 124Sn, and 208Pb. In addition to the
fact that the dominant components of the Dirac spinors
of the spin doublets are almost identical (eq. (9)), there
is a differential relation between the lower components
(eq. (10)) which is met very well.
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W. Zhang, S.G. Zhou, Phys. At. Nucl. 67, 1619 (2004).

7. D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring,
Phys. Rep. 409, 101 (2005)

8. J. Meng, H. Toki, S.G. Zhou, S.Q. Zhang, W.H. Long, L.S.
Geng, Prog. Part. Nucl. Phys. 57, 470 (2006) (arXiv: nucl-
th/0508020).

9. A.L. Blokhin, C. Bahri, J.P. Draayer, Phys. Rev. Lett. 74,
4149 (1995).

10. J.N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997).
11. J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, A.

Arima, Phys. Rev. C 58, 628R (1998).
12. J. Meng, K. Sugawara-Tanabe, S. Yamaji, A. Arima, Phys.

Rev. C 59, 154 (1999).
13. P. Alberto, M. Fiolhais, M. Malheiro, A. Delfino, M. Chi-

apparini, Phys. Rev. Lett. 86, 5015 (2001).
14. A. Arima, M. Harvey, K. Shimizu, Phys. Lett. B 30, 517

(1969).
15. K. Hecht, A. Adler, Nucl. Phys. A 137, 129 (1969).
16. J.N. Ginocchio, D.G. Madland, Phys. Rev. C 57, 1167

(1998).
17. G.A. Lalazissis, Y.K. Gambhir, J.P. Maharana, C.S.

Warke, P. Ring, Phys. Rev. C 58, R45 (1998).
18. J.N. Ginocchio, A. Leviatan, Phys. Lett. B 425, 1 (1998).
19. J.N. Ginocchio, Phys. Rep. 315, 231 (1999).
20. J.N. Ginocchio, A. Leviatan, Phys. Rev. Lett. 87, 071502

(2001).
21. J.N. Ginocchio, Phys. Rev. C 66, 064312 (2002).
22. J.N. Ginocchio, A. Leviatan, J. Meng, S.G. Zhou, Phys.

Rev. C 69, 034303 (2004).
23. J.N. Ginocchio, Phys. Rep. 414, 165 (2005).
24. S.J. Wang, S.G. Zhou, H.C. Pauli, in Proceedings of the

National Nuclear Physics Conference of China, 2004, Bei-

jing, Nucl. Phys. Rev. 21, 294 (2004) (in Chinese); arXiv:
hep-th/0501250.

25. S.G. Zhou, J. Meng, P. Ring, Phys. Rev. Lett. 91, 262501
(2003).

26. P.J. Borycki, J. Ginocchio, W. Nazarewicz, M. Stoitsov,
Phys. Rev. C 68, 014304 (2003).

27. A. Leviatan, J.N. Ginocchio, Phys. Lett. B 518, 214
(2001).

28. G.A. Lalazissis, J.König, P. Ring, Phys. Rev. C 55, 540
(1997).

29. W. Greiner, B. Müller, Quantum Mechanics: Symmetries

(Springer-Verlag, Berlin, Vienna, New York, 2001).
30. I.N. Mishustin, L.M. Satarov, T.J. Buervenich, H.

Stoecker, W. Greiner, Phys. Rev. C 71, 035201 (2005)
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